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Abstract 

The solution of the classic problem of stress in a rotating elastic disk or cylin- 

der, as solved in standard texts on elasticity theory, has two features: dynam- 

ical equations are used that are valid only in an inertial frame of reference, 

and quadratic terms are dropped in displacement gradient in the definition of 

the strain. I show that, in an inertial frame of reference where the dynamical 

equations are valid, it is incorrect to drop the quadratic terms because they 

are as large as the linear terms that are kept. I provide an alternate formula- 

tion of the problem by transforming the dynamical equations to a corotating 

frame of reference of the disk/cylinder, where dropping the quadratic terms 

in displacement gradient is justified. The analysis shows that the classic text- 

book derivation of stress and strain must be interpreted as being carried out 

in the corotating frame of the medium. 



I. BACKGROUND 

The U.S. Army is developing an electromagnetic gun (EMG) for battlefield applications. 

During the past few years, on a recurring basis, Dr. John Lyons (former ARL Director) 

and Dr. W. C. McCorkle (Director of U. S. Army Aviation and Missile Command) have 

requested that I look at some of the physics of the EMG. In a recent request, I was asked 

to look at stresses in the rotor of the EMG compulsator. The simplest physical model 

for a rotor is a rotating cylinder. Therefore, I spent some time looking at the physics of 

stresses in elastic rotating cylinders. The case of an elastic cylinder is a classic problem 

that is solved in many texts on linear elasticity [1-6]. However, when these derivations are 

examined closely, I found certain shortcomings in the treatments. In particular, when a body 

(cylinder) deforms during increasing angular velocity of rotation about its symmetry axis, 

the undeformed state (at zero angular velocity) and the deformed state (at finite angular 

velocity) are related by a large angle of rotation. When large angles of rotation coexist with 

deformations, it is well known that the quadratic terms (see Eq. (20)) in the definition of 

the strain tensor cannot be dropped, and this leads to complicated nonlinear differential 

equations. However, the problem of stresses in the rotating cylinder can be analyzed in a 

frame of reference (coordinate system) that is rotating with the cylinder. In this special 

non-inertial frame, the quadratic terms of the strain tensor can be dropped, and the stresses 

found by solving linear differential equations. The physics described above is not exposed 

in the standard treatments and this report is the subject of this explanation. 

II. INTRODUCTION 

The problem of stresses in rotating disks and cylinders is important in practical applica- 

tions to rotating machinery, such as turbines and generators, and wherever large rotational 

speeds are used. The textbook problem of stresses in elastic rotating disks and cylinders, 

using the assumption of plane strain or plane stress, is published in classic texts, such as 



Love [1], Landau and Lifshitz [2], Nadai [3], Sechler [4], Timoshenko and Goodier [5], and 

Volterra and Gaines [6]. The standard approach presented in these texts has two character- 

istic features: 

1. Newton's second law of motion is applied in an inertial frame of reference to derive 

dynamical equations for the continuum (see Eq. (1) below), and 

2. quadratic terms in displacement gradient are dropped in the definition of the strain 

tensor (see Eq.(20) below). 

In this paper, I show that, for a rotating elastic body, the second feature of the solution is 

inconsistent with the first: dropping the quadratic terms in the displacement gradient is an 

unjustified approximation in an inertial frame of reference. In what follows, I refer to the 

method that is employed in Ref. [1-6] as 'the standard method', and for brevity, I will refer 

to a cylinder as a generalization of both a disk and a cylinder. 

The classic problem of stress in an elastic rotating cylinder is complex because the un- 

deformed reference state of the body is the non-rotating state. The deformed state is one of 

steady-state rotation. The analysis of the problem must connect the non-rotating reference 

state to the rotating stressed/strained state. These two states are typically connected by 

large angles of rotation. When large angles of rotation are present, the quadratic terms 

in the displacement gradient cannot be dropped (in an inertial frame of reference) in the 

definition of the strain [7-9]. The problem of stress analysis when large-angle rotations are 

present is well known and has been discussed by a number of authors in general contexts, 

. see for example [7-9]. However, large-angle rotations in the problem of a rotating elastic 

cylinder have not been dealt with in a technically correct manner, because quadratic strain 

gradient terms are incorrectly dropped in the 'standard method' [1-6]. 

In this work, I formulate the elastic problem of a rotating cylinder in a frame of reference 

that is corotating with the material. In this corotating frame, the quadratic terms in the 

displacement gradient can be dropped, and the resulting differential equations are linear and 

can be solved. 



In section II, I review the 'standard method' of solution used in Ref. [1-6] and show 

that for a rotating cylinder the displacement gradient in an inertial frame of reference is of 

order unity, and therefore quadratic terms (in strain tensor definition) cannot be dropped 

when compared to the linear terms. Section III contains the bulk of the analysis. I describe 

the corotating systems of coordinates and the transformation of the velocity field to the 

corotating frame. I use the velocity transformation rules to transform the dynamical Eq. (1) 

from the inertial frame to the corotating frame (see Eq. (61) or (62)), where extra terms arise 

known as the centrifugal acceleration and the coriolis acceleration. In section IV, I write the 

explicit component equations for stress (in cylindrical coordinates) for the rotating elastic 

cylinder in its corotating frame. To display the resulting solution concretely, I derive the 

well-known formula for the stress in the rotating cylinder for the case of plane stress, as 

computed in the corotating frame. Stress is an objective tensor, i.e., stress is independent 

of observer motion [10,11], so the physical meaning of stress in the corotating frame is the 

same as in the inertial frame. Therefore, the stress field components in the corotating frame 

are equal to the stress field components in the inertial frame, see Eq. (36). 

III. STANDARD SOLUTION METHOD 

In the 'standard method' [1-6], the stress analysis of elastic rotating cylinders starts with 

the dynamical equations, which, in generalized curvilinear coordinates are given by [2,10,11] 

*%■ + />/* = pa* (1) 

where akj are the contravariant components of the stress tensor, fk is the vector body force, 

and ak is the acceleration vector. In Eq. (1), repeated indices are summed and the semicolon 

indicates covariant differentiation with respect to the coordinates. Expressed in terms of the 

velocity field in spatial coordinates, the acceleration is given by [10,11] 

k     dyk       H k 
a=-dT+vv;i (2) 



where va is the velocity field, and the semicolon indicates covariant differentiation with 

respect to the coordinates, and vjvk.j is called the convective term. In Eq. (1), the stress 

akj, acceleration ak, and body force fk, are generally time dependent. Equation (1) is 

derived by applying Newton's second law of motion to an element of the medium. Newton's 

second law is valid only in an inertial frame of reference, and consequently the validity of 

Eq. (1) is limited to inertial frames of reference. 

In the 'standard method' of solution, Eq. (1) is applied by invoking an "effective body 

force", of magnitude equal to the centrifugal force in the rotating frame. In the inertial 

frame, there is actually no effective force (such as Coriolis or cetrifugal force). For the case 

of a body rotating about its principle axis, a more careful determination of the terms fk - ak 

in Eq. (1) comes from setting the body force to zero (or setting equal to some applied force) 

and computing the material acceleration ak for a given body motion. For a rigid body, or 

a uniform density elastic cylinder that is rotating about its axis of symmetry at a constant 

angular velocity cj0, the Cartesian velocity field components are: v1 = -w0yj v2 = w0x, 

and v3 = 0, where superscripts 1,2,3 indicate components on the Cartesian basis vectors 

associated with the x,y,z-axes (in the inertial frame). Corresponding to this velocity field, 

the cylindrical components of the acceleration field are given by 

äfc = ^ + ^b = (-™°>°>°) (3) 
where I have chosen the z-axis as the symmetry axis and the bar over the components 

indicates that they are in the inertial frame of reference in cylindrical coordinates. For the 

case where there are no body forces, with the acceleration in Eq. (3), Eq. (1) in cylindrical 

coordinates leads to the three equations 

ä^+ä^ + ä^ + ^-röi^-pruit (4) 

O" 

r 
13     ,   -23     ,   -33     i   a 

,1 + O + O + — = ° (6) r 

where the superscripts 1,2,3 enumerate tensor components on the r, <j), z coordinate basis vec- 



tors respectively, in cylindrical coordinates and the commas indicate partial differentiation 

with respect to these coordinates. 

For steady rotation at a uniform angular velocity w0, and assuming the absence of elastic 

waves, there is rotational symmetry about the z-axis so the stress components do not depend 

on azimuthal angle <j>. Therefore, all derivatives with respect to <f> are zero, leading to the 

equations: 

ä^+ä^ + ^-rä'^-prul (7) 

ä12,, + ä23
3 + V2 = 0 (8) 

ä13
1 + ä33

3 + — = 0 (9) 

I introduce physical components of stress, arr, a^,ozz, a^, aTZ, and a**, with units of 

force per unit area and which are related to the tensor components ä11, ä22, ä33, ä12, ä13, 

and ä23, by [10,11] 

=rr _ =.11 (10) 

2^22 (H) 

äzz = ä33 (12) 

äT* = rön (13) 

ärz = ä13 (14) 

ö+z = rä23 (15) 

Expressing Eq. (7)-(9) in terms of the physical components, I obtain the well-known equa- 

tions valid in an inertial frame of reference [1-6], 

därr     därz     ärT-d^             2 ,.R, 

or        oz            r 

9 (V)+1*^+3^,0 (17) 
or \r     )     r  oz       rl 

ddrz     däzz     ärz     n ,1fix 
-ä- + -5— + — = 0 (18) or        oz        r 



Note that Eqs. (16)-(18) have been derived using Newtons's second law, and so they are 

valid only in an inertial frame of reference. In particular, Eqs. (16)-(18) are not valid in a 

rotating frame of reference. 

When a rotating disk or cylinder is analyzed, the assumption of plane stress or plane 

strain is often made. In both cases, stresses must be related to strains by constitutive equa- 

tions. For the simplest case of a homogeneous, isotropic, perfectly elastic body, the consti- 

tutive equations in curvilinear coordinates in an inertial frame can be written as [2,10,11] 

Tik    \      Ak   ,   r, .. „ik alK = Xeglk + 2ßelk (19) 

where A and ß are the Lame material constants, eik are the contravariant strain tensor 

components, e = ea
a is the contraction of the strain tensor, and gik are the contravariant 

metric tensor components.    , 

The Eulerian strain tensor eik is related to the displacement field u* by [10,11] 

eik = 2 («i;* + uk-i + um;iu
m

;Jfc) (20) 

In the 'standard method' of solution [1-6], the quadratic terms um.iUm.k are dropped, which 

leads to linear equations that can be solved (for example, by using the Airy stress func- 

tion [12]). 

However, dropping the quadratic terms in Eq. (20) is not justified for a rotating body 

because these (dimensionless) terms um;i are of order unity. To prove this assertion, it is 

sufficient to consider the limiting case of a rigid body in steady-state rotation at constant 

angular speed io0. The deformation mapping function gives the coordinates zk (here taken 

to be Cartesian) of a particle at time t in terms of the particle's coordinates Zk in some 

reference state (configuration) at time t = t0: 

zk = zk(Zm,t) (21) 

so that zk(Zm,t0) = Zk. The deformation mapping function has an inverse, which I quote 

here for later reference 



Zm = Zm{z*,t) (22) 

Both zk and Zm refer to the same Cartesian coordinate system. The coordinates of a particle 

initially at Zk at t = t0 = 0 rotating about the z-axis are given by the deformation mapping 

function 

zk = Rk
mZm (23) 

where the orthogonal matrix Rk
m is given by 

Ä*   = 

cosw0i   sinw0t 0 

— sinw0£ cosw0t 0 

0 0     1 

(24) 

The displacement vector field for this deformation mapping function is given by [13] 

u = umlm = (zm - Zm)lm = (5JT - K\)z*l (25) 

where Im are the unit Cartesian basis vectors and Rm
k is the transpose matrix that satisfies 

Rm
kR

k , = <5;m (26) 

where Sf1 = +1 if m = I and 0 if m ^ I Therefore, from Eq. (25), it is clear that gradients 

of displacement um]k appearing in Eq (20) are of order unity and therefore the quadratic 

terms um.^um.k cannot be dropped because they are not small. More specifically, the dropped 

terms in Eq. (20) vary in time between -2 and 0 (in Cartesian components): 

/ 

um;i u   ;k ~ 

— l+COSLJ0t 0 0 

0 -1 + coso;0t 0 

0 0 0 

(27) 

The above calculation was done for a rigid body, but clearly, a similar error is introduced 

for elastic bodies. Therefore, in general, for a rotating elastic body, the quadratic terms in 

displacement gradients in Eq. (20) cannot be dropped [14]. 
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In cylindrical components, the relation between the physical components (see 

Ref. [10,11]) of strain, err and e^, and physical components of the displacement field, 

(ur,u^,ttz), is given by 

dur     1 
crr — 

dr     2 '%h(%hm (28) 

H* = j ~ ^ [(t*r)a + [u4Y] (29) 

(I use a bar over err and e^ to indicate that these are cylindrical components, and indices 

rr and (jxf) (as distict from 11 and 22) to indicate that these are physical components and 

not tensor components. See the Appendix and Table I and II for notation conventions.) In 

Eq. (28) and (29), I have assumed that there is no dependence on <j> and z, so I have set 

derivatives with respect to these variables to zero. 

In the 'standard method' of solving for the stress in a rotating cylinder [1-6], the 

quadratic terms in Eq. (28) and (29) are incorrectly dropped. 

The straight forward approach to correctly studying the stresses in a rotating disk or 

cylinder, involves keeping the quadratic terms in displacement gradient in Eq. (20). However, 

this approach does not appear promising because it leads to insoluble nonlinear differential 

equations. In the next section, I approach the problem by using a transformation to a 

corotating frame of reference, in which dropping the quadratic terms can be justified for 

moderate angular velocity of rotation w0. 

IV. TRANSFORMATION TO THE ROTATING FRAME 

As discussed in the introduction, the problem of an elastic rotating cylinder is com- 

plicated because the unstressed/unstrained reference state is the non-rotating state, while 

the stressed (strained) state is rotating, and these two states are typically related by a large 

(time-dependent) angle. The analysis of the rotating disk or cylinder must relate the stresses 

in the rotating state to the reference configuration, which I take to be the non-rotating state. 

I define a transformation from an inertial frame of reference to the corotating frame of refer- 



ence of the cylinder. This transformation provides a relation between the rotating stressed 

state and the non-rotating reference configuration. 

A. Coordinate Systems 

Starting from an inertial frame of reference, 5, defined by the Cartesian coordinates 

zk = (x,y,z), I make a transformation to a rotating frame of reference 5". The rotating 

frame will be corotating with the cylinder so that in this frame S' the azimuthal velocity 

field will be zero at all times. The transformation from an inertial system of coordinates 

to a rotating system of coordinates is most simply done using Cartesian coordinates. On 

the other hand, the assumed cylindrical symmetry of the problem begs for use of cylindrical 

coordinates. Hence I will make use of four systems of coordinates. In the inertial frame S, 

I have two systems of coordinates: a Cartesian system of coordinates zk — Zk = (x,y,z), 

and a cylindrical system of coordinates xl = (r, (f>, z). In the corotating frame of reference, 

£", I have a Cartesian system of coordinates z'k = (x1, y', z') and a cylindrical coordinate 

system x'1 = (r',(/)',z'). These coordinates are summarized in Table I and the Appendix. I 

also introduce notation for tensor components in each of the four coordinate systems, see 

Table II . The Cartesian components of the stress tensor in the inertial frame S will be 

denoted by alk. In the same inertial frame S, the cylindrical components of stress will be 

älk. The Cartesian components of stress in the corotating frame S' will have a prime, a'xk. 

In this same corotating frame, £", the cylindrical components of stress will be denoted by 

using a tilde, dxk. 

Prom the vantage point of an inertial frame of reference, S, with Cartesian coordinates 

zh, consider a cylinder whose symmetry axis is aligned and colocated with the coordinate z- 

axis. At time t = -co, take the cylinder to be non-rotating. Now assume that in the distant 

past, around the time t ~ -T, the cylinder begins a slow angular acceleration lasting a long 

time, on the order of 1/e, where 1/e « T. An example of such an angular acceleration 

function is 

10 



w(t) = iw0[l + taah(c(t + r))] (30) 

where I assume that r « 1/e « T and r is the longest time constant in the problem. This 

inequality states that the acceleration occurs slowly, r « 1/e, slower than any time scale 

in the problem, and that this acceleration occurs in the distant past, 1/e « T, so that at 

t = 0,1 have a steady-state situation of a cylinder rotating at constant angular speed w0. By 

slowly accelerating the cylinder, I avoid introducing modes of vibration. As the cylinder's 

angular velocity increases from t = -oo, each particle comprising the cylinder moves along 

a spiral trajectory (with increasing radius). Prom the point of view of the inertial frame 

S, the stresses on a given element of the medium (particle) are such that they cause the 

particle to experience an acceleration, moving along the spiral path. At t = 0, the cylinder 

has achieved its maximum angular velocity u0. Due to the assumption of a perfectly elastic 

medium, at t = 0 the velocity field has zero radial component; all particles of the cylinder 

are moving azimuthally (in a plane perpendicular to the z-axis with zero radial component). 

The velocity field is that of a rigid body and the acceleration field is given by Eq. (3). 

Now I introduce the corotating frame of reference, 5", with the Cartesian coordinates 

4, whose angular velocity of rotation is equal to that of the cylinder at all times. The 

coordinates zk (= zk) and zk (= z"°) are related by 

z- = Aik(t) zk (31) 

where the time dependent matrix Aik(t) is given by 

cos(0-0o)   sin(0-0o) 0 

Aik(t) = -sin(0-0o) cos(0-0o) 0 

0 0 1 

where 0 is a function of time given by the integral of u(t): 

LOn 
ö(t) = ^ [e(t + T) + log cosh(et + eT) + log 2] 

Z6 

and 0(0) = 0O. 

(32) 

(33) 
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By construction, in the corotating frame S' the particles comprising the material are not 

rotating about the z'-axis; there is zero azimuthal component of the velocity field at all times. 

As the angular velocity u(t) increases from t = -co, each particle comprising the cylinder 

experiences an increasing effective centrifugal force that displaces the particle to a larger 

radius. In this rotating frame 5", there will (in general) also be a Coriolis force. However, 

in S', for moderate angular speed w0, the strain eik will be small, and the gradients of the 

displacement field will also be small. Consequently, dropping the quadratic terms um]jU
m.k 

in Eq. (20) will provide a good approximation to e^. 

Note that the transformation that relates cylindrical components in inertial frame S and 

rotating frame S' is given by the identity matrix 

dx{ _ dx^_ dz^_ dz^_ _   { ^ 
dx'k ~~ dza dz'm dx'k        k 

Furthermore, the time dependent transformation between inertial cylindrical coordinates 

x{ = (r, <f>, z) in S and corotating cylindrical coordinates x'{ = (r', <f>', z') in S", is given by 

r' = T 

z' = z 

where 9(t) is given by Eq. (33). The relation between cylindrical stress components ätk in 

the inertial frame S and cylindrical stress components älk in the corotating frame S' is 

Of course the transformation in Eq. (36) must be used so that the components are referring 

to the same physical point in space having coordinates xn = {r,<p,z) and x'n = (r',<j>',z'), 

where the time-dependent relation between xn and xln is given by Eq. (35). 

The Eulerian strain tensor e„ transforms in a more complicated manner.   A general 

deformation is given by 

x^x'iX^t) (37) 

12 



where a particle at time t = t0w the reference configuration has (curvilinear) coordinates Xk, 

and in the deformed state at time t the particle has coordinates x* (in the same curvilinear 

coordinate system). The Eulerian strain tensor eij(X,x) depends' on two points: X in 

the reference configuration and x in the deformed state. Consequently, under a general 

coordinate transformation to a moving frame, xl -)• xn = ti{xk,t), the Eulerian strain 

is a two-point tensor, which transforms as a second rank tensor under transformation of 

deformed coordinates 

si-+x'i = h<(x*.*) (38) 

and transforms as a scalar under transformation of reference state coordinates 

Xi-*X'i = hi(Xk,t„) (39) 

so that [15-17] 

eron(X, x) = eik(X>, *0 J£r |£ = <w(*', *') (40) 

where x and x', and X and X', are related by Eq.- (38) and (39), and I used Eq. (34). 

Therefore, the cylindrical components of strain in the inertial frame S, emn(X,x), are equal 

to the cylindrical components of strain in the rotating frame £", eik{X',x'). Finally, since 

I assume rotational symmetry about the z-axis (and z'-axis) so that all physical quantities 

have no dependence on <j) or $, which are the azimuthal coordinates of the point in the 

deformed state, x = a;* = (r, <j>, z), and coordinates of the point in the reference configuration, 

X = X{ = (Ä, $, Z). Because of the nature of the transformation to the rotating frame in 

Eq. (35), Eq. (40) can be used with r' = r, R' = R, z' = z, and Z' = Z. Therefore, the 

tensor components in the corotating frame are identical to the components in the inertial 

frame. 

B. Transformation of Lagrangean and Eulerian Velocities 

The motion of a particle in the cylinder is given by the deformation mapping function. 

In the inertial frame 5, using Cartesian coordinates, the motion of the particle is given by 

13 



Eq. (21), where the particle in the reference configuration at time t = t0 has coordinates 

Zm. The coordinates Zm label the particle in the Lagrangean desription. Using the trans- 

formation to the rotating frame in Eq. (31), the motion of the particle with label Zm with 

respect to the rotating S' frame Cartesian coordinates is given by 

z'k(Zm,t) = Akj(t)zi(Zm,t) (41) 

In discussing the transformation to the rotating system of coordinates, I must distinguish 

between the velocity of a given particle in the medium (the Lagrangean picture) and the 

velocity field (the Eulerian picture). The Lagrangean velocity v^S; Zm; t) of a given particle 

(whose coordinates in the reference configuration are Zm) with respect to the inertial frame 

S is defined as the partial time derivative of that particle's ^-coordinates, when holding Zm 

constant 

Vi(S;Z-i) = M|V) (42) 

The Eulerian velocity field, Vi(z
k, t), with respect to the frame S is a function of coordinates 

zk and time t and is related to the Lagrangean (particle) velocity by 

Vi{S-Zm-t) = ViOSS'V;*),*) = Vi{z\t) (43) 

where I used Eq. (22) to express the particle coordinate Zm in terms of its position zk at 

time t. 

I can describe the same particle's velocity (whose coordinates in the (inertial frame) 

reference configuration are Zm) with respect to the rotating frame of reference 5'.   The 

velocity of this particle with respect to the rotating frame 5" is 

dz'(Zm t)      d 
v'^Z^t) =     iK

m ' > = - [Aik(t)zk(Z™,t)} = Aik(t)zk(Z
m,t) + Aik(t)vk(S-Zm;t) 

(44) 

where I used Eq. (31) to express the particle's coordinates in terms of coordinates in the S 

frame and the dot on Aik indicates differentiation with respect to time. 

14 



The components Vi(S;Zm;t) and v-(5';Zm;i) represent physically distinct vectors (ge- 

ometric objects). Each of these vectors can be expressed on the other basis. In particular, 

according to the standard transformation rules for vector components, I have 

v'i(S
,;Zm

]t) = Aimvm(S'-Zm;t) (45) 

v,
m(S;Zm-it) = Amivi{S;Zm;t) (46) 

Equations (45) and (46) are the standard tensor transformation rules for vector components 

under the coordinate transformation given in Eq. (31). In summary, I must distinguish 

between four (Cartesian component) velocities [18]: 

Vj(5; Zm\t) = Zi(Zm,t) = components on z-axes of particle velocity with respect to S 

Vi(S'\ Zm\ t) = components on z-axes of particle velocity with respect to S" 

Vi(S";Zm;t) = ai[Z
m,i) = components on z'-axes of particle velocity with respect, to 5" 

v'm{S; Zm; t) = components on z'-axes of particle velocity with respect to S 

These four velocities are related. Multiplying Eq. (44) by Aim(t), summing over index i 

and using the orthogonal matrix properties 

Ain(t) Aim(t) = 5nm (47) 

Ani{t) Ami{t) = 8nm (48) 

leads to [18] 

vn(S"; Zm; t) = vn(S; ZT-1) + unk(S', S) zk(Z
m, t) (49) 

where wnk(S',S) is the Cartesian angular velocity tensor of frame S' with respect to frame 

S: 

15 



Unk(S',S) = Ain{t)Äik{t) (50) 

The tensor wnJt(S", 5) describes the time-dependent rotation of frame S' with respect to 

frame S. Similarly, using Eq. (21), substituting the inverse relation 

zi(Z
m,t)=Ani(t)z'n(Z

m,t) (51) 

carrying out the time differentiation, multiplying by Ami, summing over i and use of the 

orthogonality relations in Eq. (48) leads to 

v'n(S; Zm; t) = Vn(S'; Zm; t) + u'kn(S', S) z'k(Z
m, t) (52) 

where the angular velocity tensor components are expressed with respect to the 5' frame 

Cartesian basis: 

u'nmi&iS) = AmiÄni   = AniAmkLüik(S',S) (53) 

Equation (49) and (52) are the well-known rules for transformating particle velocity to a 

rotating frame of reference [18]. 

Next, I derive the equation that relates the Cartesian components of the velocity field 

in S, Vi(zk,t), to the velocity field in 5", v'i(z'k,t). Equation (43) relates the velocity field in 

the S frame to the Lagrangean (particle) velocity. Similarly, the velocity field with respect 

to the 5" frame is given by 

vKz'^t) = vJ(S*i2»it) = 9z-(Zm,t) = y,{sl.zm{z*^.t) = Viis>-Z™(Ankz'\t);t) (54) 

where I used the inverse relation zk = Ank z'n. Using Eq. (43) and (54) in the left and right 

most terms in Eq. (44), I obtain a relation between the velocity fields in frames S and 5" 

uKA *) = Aik{t) zk + Aik(t) vk{z
n, t) (55) 

In Eq. (55), the coordinates z'k and zn are related by Eq. (31).  Multiplying Eq. (55) by 

Aim, summing over index, i, using the inverse transformation in Eq. (51) and 
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ojjk(S')S) = AmjAnku
l
mn(S',S) (56) 

leads to 

vjizm, t) = Mt) v[{z^ t) - Akj(t) u'kn(3', S) z'n (57) 

Eq. (57) is the desired rule for transformation of the Eulerian velocity field from the inertial 

frame S to the rotating frame 5". Note that the right side of Eq. (57) depends only on 5' 

frame coordinates z'n and the left side depends on S frame coordinates zm- Furthermore, the 

velocity field components on the left side of Eq. (57) are taken on the (Cartesian) inertial 

frame S basis vectors, and on the right side all components are expressed on the (Cartesian) 

rotating frame S' basis vectors. 

C. Dynamical Equation in the Rotating Frame 

In what follows, I transform the momentum balance Eq. (1) to the corotating system of 

coordinates S'. For simplicity, I do this transformation using Cartesian coordinates for both 

the inertial frame S and corotating frame S". I use the transformation of the velocity field 

given in Eq. (57) to compute the terms that appear in Eq. (1). Taking the gradient of the 

velocity in Eq. (57) 

^#^ = 4* 4* ^P " 4* ^ "U^. S)' (58) o zk zn 

where I used the chain rule for differentiation ^ = Amfcsfr since zk and z'm are related by 

Eq. (41). Next, I compute the time derivative of the velocity that occurs in Eq. (1) and I 

express the right side in terms of S' frame components and coordinates: 

(59) 

where I have omitted the frame labels of the angular velocity and the coordinate arguments 

in the velocity. The divergence of the stress transforms as a vector under the transformation 

to the rotating frame 
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dzk dz'b 

Substituting Eqs. (57)-(60) into the inertial-frame momentum balance Eq. (1) and sim- 

plifying, leads to the dynamical equation for the (Cartesian) stress tensor in the rotating 

frame S' 

lda'ik     dv[      , dv[     ( ,     ,       du'in\   ,     .   ,    , ,„. 

where a'ik are the stress components in Cartesian coordinates 4, v'n is the Eulerian velocity 

field that depends on z'k and t, and the (Cartesian) components of the angular velocity tensor 

in 5" are given by Eq. (53). In Eq. (61), all repeated subscripts are summed. Note that 

all velocities that appear in Eq. (61) refer to the corotating frame S' and that all tensor 

components are taken on the S' frame Cartesian basis vectors. The first two terms in Eq. 

(61) are the acceleration (including the convective term) as seen in the corotating system 

of coordinates. The third term u'im u'mn z^ is the centrifugal acceleration. The fourth term, 

Cj'inz'n is the angular acceleration. The last term, —2u'inv'n is the Coriolis acceleration. 

The dynamical Eq. (61) is a tensor equation; the quantities a'kn, w'mn, and v'n, are Carte- 

sian tensors. Under orthogonal transformations from one Cartesian system to another, 

Eq. (61) is covariant: it has the same form. The group of symmetry operations may be 

extended to transformations between curvilinear coordinates by writing Eq. (61) in a man- 

ifestly covariant form as: 

J"r** = ^ + finSiin + 2Ö»i«B+(öm<Önra + ^- - a + vnv\n + 2ün
iv»+(üm

iün
m + -1^) C (62) 

where the tilde over each tensor indicates that the components are taken on generalized 

curvilinear coordinate (such as cylindrical) basis vectors in the rotating frame of reference S". 

Equation (62) is general; it is valid for all motions and all materials. Equation (62) expresses 

Newton's law for a continuous medium in an arbitrary rotating frame of reference that is 

defined by a general (Cartesian) angular velocity tensor uJik(S',S) = Au(t) Aik(t), which 

relates the inertial frame S and rotating frame S", with coordinates related by Eq. (31). 
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The quantities (n are the contravariant components of the position vector in curvilinear 

coordinates x'm, which are related to the Cartesian position vector components z'k by 

r)r'm 

<~ = ?*z (63) 

The rotating frame curvilinear components of stress, velocity and angular velocity, äab, va, 

and <Da
6, are related to their rotating frame Cartesian components, a'^, v'k, and w(5-, by: 

b = ö^öi* (64) 

/a 

«• = 5?«* <65> 

"• = 5=ärfw« (66) 

where z"5 and x'a are the Cartesian and curvilinear coordinates in the rotating frame S'. 

Note that the partial derivative with respect to coordinates z'k in Eq. (61) has been replaced 

by a covariant derivative with respect to the curvilinear coordinates x'k in Eq. (62). See 

Tables I and II for summary of the notation. Identification of the meaning of the various 

terms in Eq. (62), such as the Coriolis acceleration and centrifugal acceleration is clear from 

comparison with Eq. (61). 

V. ROTATING CYLINDER EQUATIONS IN COROTATING COORDINATES 

In order to obtain the explicit equations for a rotating cylinder from Eq. (62), I need 

to compute vn, cDm
n, and ("• As described previously, I take the reference configuration 

of the cylinder to be the stationary cylinder at t = -co in the inertial frame S. I assume 

that the cylinder experiences a slow angular acceleration (such as given by Eq. (30)) that 

lasts approximately time At = — 1/e, and has peak magnitude at t = —T, with 1/e << T. 

Equation (62) is general; it is valid for all motions and all materials. In what follows, I 

restrict my remarks to a perfectly elastic cylinder. 

In the inertial frame S, as the cylinder increases its angular velocity, the material particles 

of the cylinder move outward in a spiral path, with some motion in the z-direction. In the 
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inertial frame £, the contravariant components of the velocity field in cylindrical coordinates 

are 

tJi = (S1,w(t),e8) (67) 

where v1 and v3 are the radial and z-components of velocity and where the azimuthal com- 

ponent u)(t) is given by Eq. (30). I obtain the velocity components in cylindrical coordinates 

in the corotating frame S" as follows: first, transform v% to inertial frame Cartesian com- 

ponents vl using the standard vector transformation rule between Cartesian and cylindrical 

coordinates. Next, use Eq. (57) to transform the inertial frame Cartesian componets v{ to 

the rotating S1 frame Cartesian velocity field v'\ Finally, use the standard tensor transfor- 

mation rules, between Cartesian and cylindrical coordinates (both in the rotating frame), 

to transform the velocity field from Cartesian components va to cylindrical (rotating frame) 

components v'\ where I made use of the angular velocity components 

u)ik{S',S) = AliAlk=u{t) 

'o   -10^ 

+10   0 

y 0     0   Oy 

u'ik{S', S) = Aim Akn umn{S', S)'        (68) 

Following this procedure, I obtain the velocity components in cylindrical coordinates in the 

corotating frame 5" 

vi = {v\ Q,v3) (69) 

where the azimuthal component of velocity is zero for all time, by construction of the coro- 

tating frame S", as expected. 

In the corotating frame S', there is particle motion around the time t « -T. However, 

at i = 0 the particles have reached their new (deformed) steady-state positions and motion 

has ceased; the velocity field is given by 

«* = (0,0,0) (70) 

which is the velocity field of a rigid body. Since the velocity field is zero at t = 0, the Coriolis 

acceleration term in Eq. (62) does not contribute in steady-state rotation. 
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Using Eq.(66), the angular velocity tensor in cylindrical coordinates in the corotating 

frame S' is 

/ 

w„ 

\ 

V 

(71) 

/ 

0       u)(t)/r' 0 

-r'u)(t)      0      0 

0 0      0 

At t = 0, the time derivative of the angular velocity tensor is zero.  Using this fact, and 

Eq. (70) and (71), the stress Eqs. (62) in the corotating frame are given by 

-12     ,   -23      ,3 -12 _ n a   i + o   Q H—-o    — u 

CT13 
^-13      ,   -33      ,   u      _ n a   i + a   3 H  — u 

(72) 

(73) 

(74) 

Equations (72)-(74) are the equations satisfied by the stress tensor in cylindrical components 

at t = 0, in steady-state rotation in the corotating frame S'. In terms of physical components 

(see Eq. (10)-(15)), Eq. (72)-(74) become: 

3dTr     darz dTT - a* 
dz' r' 

darz     däzz     ~TZ 

= -pr'u% 

dr 

dr' 
+ dz' 

+ —= 0 

(75) 

(76) 

(77) 

Note that Eq. (75)-(77) in the corotating frame 5' have the same form as Eq. (16)-(18) 

in the inertial frame S. However, the key point is that the corotating frame Eq. (75)-(77) 

have a distinct advantage: the quadratic strain gradient terms in the definition of the strain 

in Eq. (20) can be dropped because they are small in the corotating frame S'. The same is 

not true in the inertial frame S. 

To proceed with the solution in the corotating frame, the constitutive Eq. (19) (in inertial 

frame S) must be transformed to the corotating frame S' by taking cylindrical components 

in the S frame and using Eq. (34) to obtain an expression of the same form as in Eq. (19) 

but in the corotating frame S'. In this transformation, the Lame constants are treated as 
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invariants. So the constitutive relations in the corotating frame S' are the same as in the 

inertial frame S. 

In the corotating frame S', dropping the quadratic terms in displacement gradients, 

which relate the displacement field to strain, is justified since in the rotating frame S' these 

terms can be considered small for moderate angular velocity. Therefore, the solution in the 

corotating frame S' can proceed in an analogous way to that of the 'standard method', but 

I have not made the (incorrect) approximation of dropping quadratic displacement gradient 

terms in the inertial frame. 

The stress tensor is objective, so the stress in the rotating frame has the same meaning as 

in the inertial frame, see Eq. (36). The boundary conditions on the stress tensor components 

in the corotating frame are the same as in the inertial frame, due to the objectivity of stress 

tensor. Alternatively, one can verify that the boundary conditions on the stress in the 

rotating frame are the same as in the inertial frame [20]. 

VI. PLANE STRESS SOLUTION 

The solution of the problem of stress in a rotating cylinder in the corotating frame of 

reference now follows. The solution in the corotating frame parallels the solution in the 

'standard method' [1-6], except that the incorrect approximation of dropping the quadratic 

strain gradient terms in the inertial frame is avoided. 

I assume that in the inertial frame S, the cylinder is rotating at angular velocity u0 and 

has radius b. Under the assumption of plane stress [5], where 

cr" = ö*z = orz = 0 (78) 

with boundary condition of zero stress on the long peripheral surface: 

As mentioned above, stress is an objective tensor [10,11], so the physical meaning of the 

boundary conditions in Eq. (78) and (79) in the corotating frame S' are the same as the 
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physical meaning of the analogous conditions in the inertial frame (as used, for example by 

Timoshenko [5]). Also, as shown above, I may take the (transformed) linear elastic relations 

in the corotating frame to be of the same form as in the inertial frame: 

grr = i   (yr_vdM\ (80) 
E * 

g* = I [o**-v3") (81) 
E  * ^ 

where Young's modulus E and Poisson's ratio v are related to the Lame constants by 

E = ^(3A + 2/x) (82) 

A 
v = (83) 

2(A + /x) 

where the Lame constants are treated as invariant scalars in the transformation. The elastic 

relations in Eq. (80) and (81) are in the corotating frame S'. They can be obtained from 

the linear elastic relations in the inertial frame 5, Eq. (19), by using the transformations to 

the corotating frame in Eq. (36) and (40), and the coordinate transformation in Eq. (35). 

In.doing the transformation of the elastic relations to the corotating frame, I am assuming 

that the tensor that enters in the inertial frame elastic relations in Eq. (19) is the Eulerian 

strain tensor given in Eq.(20) and the quadratic terms have not been dropped. (As discussed 

earlier, dropping the quadratic terms in the displacement gradients is done in the corotating 

frame.) 

For small displacements in corotating frame £", the gradients of the displacement vector 

in frame S' can be assumed small—for moderate angular velocity w0, so the quadratic terms 

in the gradient of the displacement can be neglected. Therefore, in the corotating frame 

S", I take the relation between the radial component of the displacement vector, ü, and the 

physical components of strain, err and e^, to be (compare with Eq. (28) and (29)) 

*-=! (84) 

eH = l (85) 
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where the tilde on ü indicates that the radial component of displacement field is taken in 

the corotating frame S' and the prime on r' indicates that the cylindrical radial coordinate 

is in the corotating frame S", see the transformation in Eq. (35). 

Substituting Eq. (84) and (85) into Eq. (80) and (81), leads to relations between the 

physical components of stress and the radial displacement field 

E     f du       u 
a   = 

1 — v2 \d r'       r 

E     (ü        du 

+ »-.) (86) 

a* 
\ — vl \r       orJ 

Substituting these relations into Eq. (75) leads to a differential equation for the displacement 

in the rotating frame 5" 

/2<92ü       ,dü     _        1 — v ,2 

r~—+ r'^-ü=-^—-pu2
0T

,z (88) 
dr'2        dr' E 

The general solution is [5] 

.      1 
U=E 

(l_I/)C1r
,-(l + i/)C2^-^-p«Jr'3 

r o 
(89) 

Substitution of this solution into Eq. (86)and (87) I obtain 

ärr = Ci+C2J_       1+Zpu2r,2 (90) 
r "• o 

d** = Cl-C2±-l-^pulr'* (91) 

The stresses at r' = 0 must remain finite, so I take C2 = 0. Applying the boundary condition 

on the long peripheral surface, Eq. (79) leads to C\ - (3 + v) pu2
0 b2/8 and the stresses 

äTT —~ ' ' «• .2 ^2     -'2 
^P"0

2(&2-r'2) (92) 

^ = ^^2[(3 + ^2-(l + 3^)r'2] (93) 

The physical stress components in Eq. (92) and (93) are in the corotating frame S'. However, 

due to the transformation between the corotating frame and the inertial frame in Eq. (36), 

and the coordinate transformation in Eq. (35), the corotating frame components in Eq. (92) 

and (93) are equal to the inertial frame components of stress. Using the expressions in the 

rotating frame, such as Eq. (75)—(77), expressions for plane strain and other boundary 

conditions can be derived for rotating cylinders, disks and annular rings, see Ref. [1-6]. 
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VII. SUMMARY 

The classic problem of stress in rotating disks or cylinders is important in applications to 

turbines, generators, and whenever large rotational speeds exist. The textbook problem of 

stress in perfectly elastic disks or cylinders is solved in standard texts [1-6]. The 'standard 

method' of solution begins with Eq. (1) and drops terms that are quadratic in strain gradient 

in the definition of the strain, see Eq. (20). Equation (1) is valid only in an inertial frame of 

reference, since it is derived from Newton's second law of motion, which itself is only valid 

in an inertial reference frame. 

In this work, I have shown that dropping the terms quadratic in the displacement gradient 

(in Eq. (20)) is incorrect in the inertial frame in which Eq. (1) is applied in the 'standard 

method' of solution [1-6]. I provide an alternative formulation of the rotating elastic cylinder 

problem in a frame of reference that is corotating with the cylinder. In this corotating frame, 

I derive the dynamical equation for the stress (see Eq. (61) or (62)) and I show that terms 

quadratic in the displacement gradient can be dropped because they are small (for moderate 

angular speed of rotation). This analysis in the corotating frame shows that the 'standard 

method' of solution [1-6] should be interpreted as being carried out in the corotating frame 

of reference of the cylinder. 

Furthermore, when stresses are computed in rotating disks or cylinders composed of ma- 

terials that have more complex constitutive equations, such as elastic-plastic or viscoelastic 

behavior, one must carefully justify dropping the quadratic terms in displacement gradients. 

If dropping these terms cannot be justified, then the problem can be analyzed in a rotat- 

ing frame, using the derived Eq. (61) or (62). Another practical application of the stress 

Eq. (62) in the rotating frame .is to study elastic waves in bodies during rotation, where 

coriolis effects may play a role. 
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APPENDIX A: CONVENTIONS 

I specify tensor components on coordinate (non-holonomic) basis vectors using numerical 

indices, 1,2,3, such as a12. For physical components, which have the dimensions associated 

with that quantity, I use lettered indices, such as a^. In addition, I must distinguish between 

four coordinate systems: Cartesian and cylindrical coordinates in the inertial frame S and 

Cartesian and cylindrical in the corotating frame £". I use zk = (x, y, z) and xk = (r, (f>, z) 

for Cartesian and cylindrical coordinates in inertial frame S, respectively. In corotating 

frame £", I use z'k = (x',y',z') and xlk — (r',<f>',z') for Cartesian and cylindrical coordi- 

nates, respectively. For distinguishing components in these four coordinate systems, I use 

an additional mark as follows: absence of mark and a bar, for Cartesian and cylindrical 

components in inertial frame S, respectively. For components in the corotating frame S", I 

use a prime and a tilde, for Cartesian and cylindrical components, respectively. See Table I 

and II. 

26 



REFERENCES 

[I] A. E. H. Love, p. 148, A Treatise on the Mathematical Theory of Elasticity, Dover 

Publications, 4th Edition, New York, (1944). 

[2] L. D. Landau and E. M. Lifshitz, p. 22, Theory of Elasticity, Pergamon Press, New 

York (1970). 

[3] A. Nadai, "Theory of Flow and Fracture of Solids", p. 487, McGraw-Hill, New York 

(1950). 

[4] E. E. Sechler, p. 164, Elasticity in Engineering, John Wiley & Sons, Inc., New York 

(1952). 

[5] S. P. Timoshenko.and J. N. Goodier, p. 81, Theory of Elasticity, 3rd Edition, McGraw- 

Hill Book Company, New York, (1970). 

[6] E. Volterra and J. H. Games, p. 156, Advanced Strength of Materials, Prentice-Hall, 

Inc., Englewood Cliffs, N.J., USA, (1971). 

[7] J. K. Dienes, Acta Mechanica, "A discussionof material rotation and stress rate", 65, 

1-11 (1979). 

[8] J. K. Dienes, Acta Mechanica, "A discussionof material rotation and stress rate", 32, 

217-232 (1986). 

[9] P. M. Naghdi and L Vongsarnpigoon, "Small Strain Accompanied by Moderate Rota- 

tion", Technical Repor UCB/AM-81-4, (1981). 

[10] A. C. Eringen, Nonlinear Theory of Continuous Media, McGraw-Hill Book Company, 

New York, (1962). 

[II] M. N. L. Narasimhan, Principles of Continuum Mechanics, John Wiley & Sons, Inc., 

New York (1992). 

[12] For example, see Ref. [6]. 

27 



[13] A. J. M. Spencer, p. 63, Continuum Mechanics, Longman Mathematical Texts, Long- 

man, New York (1980). 

[14] For the limiting case of a rotating rigid body, the strain eik = 0 because the linear 

displacement gradient terms wi;Jt + uhii cancel the quadratic terms um.iUm.k, so that the 

full strain tensor eik — 0. 

[15] F. D. Murnaghan, Am. J. Math., "Finite Deformations of an Elastic Solid", 59, 235-260 

(1937). 

[16] J. M. BGambi, A. San Miguel, and F. Vicente, Gen. Rel. Grav., "The Relative Defor- 

mation Tensor for Small Displacements in General Relativity", 21, 279-286 (1989). 

[17] T. B. Bahder, "Note on Derivation of Lagrangian and Eulerian Strain Tensors in Finite 

Deformation Theory", Army Research Laboratory Technical Report (in press). 

[18] J. L. Synge and A. Schild, Tensor Calculus, Dover Publications, Incorporated, New 

York, (1981). 

[19] J. L. Synge, Relativity: The General Theory, (North-Holland Publishing Co., New York, 

1960). 

[20] T. B. Bahder, "Boundary conditions in a rotating frame of reference", unpublished. 

28 



TABLES 

Cartesian 

Cylindrical 

TABLE!. Coordinates 

Inertial Frame S Rotating Frame S" 

zk = zk 

x" 

Jk 

Jk 

Cartesian 

Cylindrical 

TABLE II. Tensor Components 

Inertial Frame S 

a<*{zk) = aab, eat, wa
6 

äab(xk), eifc, ü
b 

Rotating Frame S" 

ä°»(x'k), eik> ü
b 
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